دانلود مقاله رگرسیون لجستیک
فصل اول:
مقدمه ای بر الگوهای خطی تعمیم یافته
تحلیل رگرسیونی، فن و تکنیکی آماری برای بررسی و به مدل در آوردن ارتباط بین متغیرهاست. کاربردهای رگرسیون، متعدد است. و تقریباً در هر زمینه ای از جمله مهندسی و فیزیک، اقتصاد، مدیریت، علوم زیستی و بیولوژی و علوم اجتماعی صورت میپذیرد. در حقیقت تحلیل رگرسیونی ممکن است فن و تکنیکی آماری با بیشترین و وسیعترین کاربرد بین تکنیکهای آماری باشد.
منظور از مدل بندی یا مدل کردن یک فرآیند، در نظر گرفتن یک مدل ریاضی بصورت یک معادله به منظور نشان دادن رفتار و روند کلی آن فرآیند میباشد. و رگرسیون یکی ازمهمترین و پرکاربدترین انواع مدل بندی در آمار است که به دو صورت خطی و غیر خطی مطرح میشود.
1-1- الگوهای خطی :
مدلی را مدل خطی میگویند که تابعی خطی بر حسب پارامترهای خود باشد. مثلاًَ مدلهای زیر خطی هستند:
که در آنها متغیر پاسخ یا برآمد، مجموعه ای از متغیرهای پیشگو یا برگشت،
مجموعه پارامترهای نامعلوم و جمله خطای تصادفی است. گاهی اوقات متغیرهای برگشت را متغیر کمکی مینامند. ما نوعاً فرض میکنیم که جمله خطای دارای میانگین صفر است. بنابراین، میانگین پاسخ در الگوی رگرسیون خطی عبارتند از:
از الگوهای رگرسیون خطی به دلایل گوناگونی، زیاد استفاده میشود. اول اینکه مدلهای خطی اغلب مدلهای تجربی و عملی تری برای تحلیل فرآیندهای پیچیده و بطور کلی مدل کردن پدیدههای ناشناخته محسوب میشوند. از طرفی تحلیل مدلهای خطی نیز به مراتب آسانتر از تحلیل مدلهای غیرخطی است.
دومین دلیل مشهود بودن الگوهای رگرسیون خطی این است که از آنها پارامترهای مجهول مستقیماً برآورد میشوند. روش کمترین مربعات یک تکنیک برآورد پارامتر است که به اوایل قرن نوزدهم بر میگردد. وقتی از این روش در یک الگوی خطی استفاده میشود، تحلیلگر باید فقط یک مجموعه مرکب p=k+1 از معادله خطی را نسبت به p=k+1 مجهول
حل کند. امروزه ماشینهای محاسبه کننده دستی و برنامههای رایانه ای روش کمترین مربعات را برای الگوهای خطی انجام میدهند، از این رو برازش مدل رگرسیون بسیار آسان است. سرانجام اینکه یک نظریه آماری واقعاً جالب و توسعه یافته برای الگوی خطی وجود دارد.
اگر خطاهای در الگوی خطی را دارای توزیع نرمال مستقل با واریانس ثابت فرض کنیم آنگاه آزمونهای آماری و فواصل اطمینان مربوط به پارامترهای الگو و فواصل پیشگویی و اطمینان برای پاسخ را میتوان به سهولت بدست آورد. علاوه بر این، این روشها به خوبی در بسیاری از بستههای نرم افزارآماری انجام داده شده و لذا به آسانی اجرا میشود.
در ضمن در آموختن الگوهای خطی تعمیم یافته، باید برخی از نظریهها و جنبههای علمی استفاده از رگرسیون خطی را مد نظر قرار دهیم.
1-2-الگوهای غیر خطی :
مدلی که در آن متغیر پاسخ تابعی خطی بر حسب پارامترهای مدل نباشد مانند مدلهای زیر:
تحلیل مدلهای غیر خطی نسبتاً دشوار و کاملاً حرفه ای است. در تمامی فرآیندهایی که متغیر پاسخ دارای توزیع دوجمله ای، چندجمله ای و یا پواسن میباشد (متغیر پاسخ یک متغیر شمارشی است) مدل مناسبی که برازنده این فرآیند میباشد یک مدل غیر خطی است.
1-3- الگوهای خطی تعمیم یافته :
واضح است که وقتی با الگوهای رگرسیون خطی و غیرخطی سروکار داریم توزیع نرمال نقش محوری را ایفا میکند. در حقیقت در روشهای استنباطی مربوط به الگوهای رگرسیون خطی و غیرخطی فرض بر این است که متغیر پاسخ از توزیع نرمال تبعیت میکند. وضعیتهای عملی زیادی وجود دارند که این فرض حتی به طور تقریبی برقرار نیست. برای مثال، فرض کنید متغیر پاسخ یک متغیر گسسته نظیر یک شمارش است. ما اغلب با شمارش عیبها یا « پیشامدهای نادری » چون آسیبها، بیمارانی با امراض خاص و حتی با وقوع پدیدههای طبیعی از قبیل زمین لرزهها و طوفانهای وابسته به آن مواجه میشویم. امکان دیگر یک متغیر پاسخ دوتایی است. مطالعاتی که درآن متغیر پاسخ « موفقیت » یا « شکست » یعنی (صفر یا یک) است. تقریباً در تمام زمینههای علوم و مهندسی نسبتاً متداول است. وضعیتهای زیادی نیز وجود دارد که متغیر پاسخ پیوسته است، لیکن فرض نرمال بودن کاملاًَغیرواقعی است. مثالهایی در این مورد عبارتند از : توزیع فشارها در اجزاء مکانیکی و زمان زوال اجزاء الکترونیکی یا سیستمها. این نوع پاسخها نامنفی بوده و نوعاً یک رفتار چوله به راست بالایی را نشان میدهند.
فهرست مطالب
فصل اول: مقدمه ای بر الگوهای خطی تعمیم یافته 1
1-1- الگوهای خطی : 1
1-2-الگوهای غیر خطی : 3
1-3- الگوهای خطی تعمیم یافته : 3
1-4- رگرسیون لجستیک حالت خاصی از رده الگوهای خطی تعمیم یافته: 5
فصل دوم: رگرسیون لجستیک 7
2-1ـ مفهوم کلی متغیرهای نشانگر : 7
2-2- مدلهای رگرسیونی با یک متغیر پاسخ نشانگر : 7
2-3- الگوی رگرسیونی که واریانس تابعی از میانگین است : 8
2-4- یک مدل خطی : 10
2-5- یک مدل غیرخطی : 11
2-6- چند خاصیت منحنی لجیت : 14
2-7- فرضهایی که در رگرسیون لجستیک وجود ندارد : 14
2- 8 – فرضهایی که در رگرسیون لجستیک وجود دارند : 15
فصل سوم : براورد پارامترهای مدل رگرسیون لجستیک 16
3-1- برآورد پارامتر با استفاده از درستنمایی ماکزیمم : 16
3-2- رابطه بین برآورد درستنمایی ماکزیمم الگوی رگرسیون لجستیک و کمترین مربعات موزون : 19
فصل چهارم : استنباط های آماری با استفاده از رگرسیون لجستیک 23
4-1- استنباط والد وقتی از رگرسیون لجستیک استفاده میکنیم : 23
4-2- استنباط درستنمایی در رگرسیون لجستیک : 26
فصل پنجم :نرم افزار SAS و رگرسیون لجستیک 29
فصل ششم: 34
مثال 6-1 34
مثال 6-2 46
منابع : 53
منابع :
1- الگوهای خطی تعمیم یافته با کاربردهای آن در مهندسی و علوم
تألیف : ریموند اچ میرز- داگلاس سی.منتگمری – جئوفری وینینگ.
ترجمه : دکتر حسینعلی نیرومند.
2- مقدمه ای بر تحلیل رگرسیون خطی
تألیف : داگلاس منتگمری – الیزابت پک ترجمه : سید ابراهیم رضوی پاریزی
3- رگرسیون خطی کاربردی
تألیف : سنفورد وایزربرگ ترجمه : دکتر حسینعلی نیرومند
4- مقدمه ای بر الگوهای خطی تعمیم یافته
تألیف : آنت. جی. دابسن ترجمه : دکتر حسینعلی نیرومند
5 – مدلهای خطی برای آمار :
تألیف : الوین رنچر ترجمه : دکتر ابولقاسم بزرگنیا
مقاله رگرسیون لجستیک با کیفیت عالی آماده خرید اینترنتی میباشد. بلافاصله پس از خرید، دکمه دانلود ظاهر خواهد شد. فایل به ایمیل شما نیز ارسال خواهد گردید.
این فایل با کیفیت عالی آماده خرید اینترنتی میباشد. بلافاصله پس از خرید، دکمه دانلود ظاهر خواهد شد. فایل به ایمیل شما نیز ارسال خواهد گردید.
- لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
اولین نفر باشید